翻訳と辞書
Words near each other
・ Grębocin, West Pomeranian Voivodeship
・ Grębociny
・ Grębosze
・ Gręboszyce
・ Gręboszów
・ Grünstadt station
・ Grünstadt-Land
・ Grünstadt–Altleiningen railway
・ Grünstein (Watzmann)
・ Grünstraße (KVB)
・ Grünten
・ Grünwald
・ Grünwald Castle
・ Grünwald, Bavaria
・ Grünwalder Stadion
Grünwald–Letnikov derivative
・ Grünwinkel
・ Grüsch
・ Grütli Union
・ Grütschalp railway station
・ Grüze
・ Grüß Gott
・ Grüüne
・ Grýla
・ Grýtubakkahreppur
・ Grāpple
・ Grāveri
・ Grāveri Parish
・ Grāveri, Alsunga Municipality
・ Grădina


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grünwald–Letnikov derivative : ウィキペディア英語版
Grünwald–Letnikov derivative

In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague, in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.
==Constructing the Grünwald–Letnikov derivative==

The formula
:f'(x) = \lim_ \frac
for the derivative can be applied recursively to get higher-order derivatives. For example, the second-order derivative would be:
:f''(x) = \lim_ \frac
: = \lim_ \frac-\lim_ \frac}
Assuming that the ''h'' 's converge synchronously, this simplifies to:
: = \lim_ \frac,
which can be justified rigorously by the mean value theorem. In general, we have (see binomial coefficient):
:f^(x) = \lim_ \fracf(x+(n-m)h)}.
Removing the restriction that ''n'' be a positive integer, it is reasonable to define:
:\mathbb^q f(x) = \lim_ \frac\sum_(-1)^m f(x+(q-m)h).
This defines the Grünwald–Letnikov derivative.
To simplify notation, we set:
:\Delta^q_h f(x) = \sum_(-1)^m f(x+(q-m)h).
So the Grünwald–Letnikov derivative may be succinctly written as:
:\mathbb^q f(x) = \lim_\frac.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grünwald–Letnikov derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.